На главную | Публикации | Адаптация организма

Воспитание и развитие детей и подростков, вопросы здоровья


Повышение резистентности организма и профилактика неинфекционных заболеваний




Оригинальные тексты для сайтов и веб-проектов. Копирайт, рерайт, переводы.
Профессиональное наполнение вебсайтов уникальным контентом и новостями.
Оптимизированные тематичные тексты и фото по низкой стоимости. Надёжно.


Стресс-лимитирующие системы организма

Представленные на предыдущих вебстраницах факты позволяют отметить две существенные черты процесса адаптации к стрессорным ситуациям. Во-первых, данный процесс происходит в условиях, когда выход из стрессорной ситуации за счет внешней поведенческой адаптации невозможен и представляет собой своеобразную внутреннюю адаптацию к безвыходным на первый взгляд ситуациям - вероятный физиологический эквивалент того, что обычно в жизни обозначается как терпение или выдержка. Во-вторых, прекращение возбуждения стресс-реализующих систем, развивающееся в процессе адаптации к стрессорным ситуациям, означает снижение концентрации катехоламинов, действующих на органы-мишени и в сочетании с десенситизацией уменьшает вероятность стрессорных повреждений внутренних органов. Таким образом, можно предположить, что какие-то тормозные механизмы, подавляющие при повторных или затянувшихся стрессорных ситуациях возбуждение стресс-реализующих систем, являются механизмами «терпения» и естественной профилактики стрессорных повреждений. Иными словами, выявившаяся в исследованиях ситуация, при которой увеличенная мощность стресс-реализующих систем до определенного времени не приводит к увеличению стресс-реакции на раздражители среды, весьма выгодна для организма. По существу, она составляет основу адаптации к стрессорным воздействиям.

При анализе этого парадоксального явления специалистами несколько лет назад была сформулирована гипотеза, суть которой состоит в том, что одним из важных механизмов адаптации к стрессорным ситуациям окружающей действительности является активация центральных регуляторных механизмов, которые при действии эмоционально-болевых и других аналогичных раздражителей тормозят выход рилизинг-факторов и как следствие выход катехоламинов и кортикостерона. В головном мозге определенные системы нейронов осуществляют синтез и выделение медиаторов: ГАМК, дофамина, серотонина, глицина, опиоидных и других пептидов, которые взаимодействуют со стресс-реализующими системами и модулируют их активность. Можно предположить, что именно эти системы ограничивают стресс-реакцию и играют роль в адаптации организма к повторяющимся, безвыходным на первый взгляд ситуациям - glavsovet.ru. Аналогичным образом на периферии действуют не менее важные регуляторные системы адениннуклеотидов, простагландинов, антиоксидантные системы, которые, выступая в роли модуляторов, могут ограничивать чрезмерные эффекты катехоламинов и других факторов, и становятся таким образом основой десенситизации и предупреждают стрессорные повреждеиня.

Эти центральные и периферические механизмы были обозначены как стресс-лимитирующие, модуляторные системы.

Можно полагать, что функция стресс-лимитирующих систем в процессе эволюции сопряжена с функцией стресс-реализующих систем, и соответственно их функциональные возможности должны возрастать при повторных стрессорных воздействиях. Это ограничивает стресс-реакцию и обеспечивает защитные эффекты адаптации к стрессорным воздействиям. Причем организм может оказаться защищенным не только от повреждающих стрессорных ситуаций, но также от широкого спектра повреждающих факторов среды, действие которых блокируется метаболитами стресс-лимитирующих систем. Это представление явилось основанием для использования адаптации к кратковременным стрессорным воздействиям или метаболитов стресс-лимитирующих систем для предупреждения и экспериментальной терапии не только стрессорных повреждений, но и заболеваний, в патогенезе которых стресс играет важную роль.

Для того чтобы оценить обоснованность такого подхода и самой концепции стресс-лимитирующих систем мы рассмотрим некоторые факты, характеризующие состояние этих систем в процессе стрес-реакции и их адаптивную роль.

1. Стресс-реакция закономерно сопряжена с активацией биосинтеза и выделения в кровь метаболитов центральных и периферических стресс-лимитирующих систем. Так, при острых стрессорных воздействиях β-эндорфин и АКТГ выбрасываются из гипофиза в кровь в эквимолярных количествах. Весьма существенно, что такое сопряжение между стресс-реализующей и опиоидергической системами является весьма прочным, так как оно детерминировано на генетическом уровне и определяется тем, что АКТГ и β-эндорфин синтезируются в клетках гипофиза в виде единой полипептидной цепи, а точнее, в виде общего предшественника «проопиокортина», содержащего наряду с АКТГ α-, β- и γ-меланотропины, а также β-липотропин. В итоге в ответ на поступающий из гипоталамуса кортикотропин-рилизинг-фактор происходит одновременное высвобождение АКТГ и β-эндорфина из передней доли гипофиза в кровь.

Вторая ступень сопряжения реализуется на регуляторном уровне и состоит в том, что выделяющийся под влиянием АКТГ кортикостерон по механизму обратной связи ограничивает синтез АКТГ и эндорфинов в гипофизе. Сопряжение между стрессреализующими системами и стресс-лимитирующеи системой опиоидных пептидов существует и на уровне надпочечников. Показано, что возникающая под влиянием стресса активация надпочечников приводит не только к стимуляци «выброса» катехоламинов из этих желез, но также к сопряженному высвобождению из них мет-энкефалина, который образуется из проэнкефалина А, содержащегося в хромаффинных клетках надпочечников вместе с катехоламинами. Значимость сопряженной мобилизации системы опиоидных пептидов при активации стрессреализующих систем будет рассмотрена более подробно далее. Здесь лишь подчеркнем, что опиоидные пептиды находятся в тесном функциональном контакте как со стрессреализующей адренергической системой, так и со стресс-лимитирующими системами - серотонинергической и дофаминергической и оказывают на эти системы модулирующее действие; в частности, данные пептиды ограничивают эффекты активации адренергической системы и потенцируют действие серотонинергической.

Можно полагать, что такая надежная организация сопряжения со стресс-реализующими системами эволюционно детерминирована для всех стресс-лимитирующих систем. Так, стресс-реакция, вызванная самыми различными факторами, - от эмоционально-болевого воздействия до инфаркта миокарда - сопряжена с активацией ГАМК-ергической системы в полушариях головного мозга и прежде всего - с увеличением интенсивности биосинтеза глутамата и ГАМК в 2-3 раза. При этом один из метаболитов ГАМК-ергической системы - γ-оксимасляная кислота (ГОМК) - при введении извне подавляет стресс-реакцию.

Такая же сопряженная со стресс-реакцией активация доказана для серотонинергической системы головного мозга. Показано, что серотонин, синтезирующийся в нейронах ядер шва ствола мозга, поступает по аксонам этих нейронов в гипоталамус и лимбическую систему. Под влиянием стрессорных воздействий высвобождение, распад и ресинтез серотонина в этих и некоторых других структурах мозга закономерно возрастает. Значимость этого факта определяется тем, что серотонин ограничивает возбуждение адренергических центров и тем самым может лимитировать стресс-реакцию.

Активация периферических стресс-лимитирующих систем также сопряжена со стресс-реакцией, причем наиболее обстоятельно это сопряжение изучено для системы простагландинов. Здесь следует подчеркнуть, что под влиянием стрессорного адренергического эффекта увеличивается активность фосфолипаз и как следствие - образование основного предшественника простагландинов - арахидоновой кислоты в липидном бислое плазматической мембраны клеток различных органов; развивающаяся одновременно активация простагландин-синтетазы приводит к увеличенному образованию и выделению простагландинов. Причем простагландины группы Е по механизму обратной связи блокируют как выделение катехоламинов из нервных окончаний, так и их эффекты в органахмишенях, а простагландин I2 (простациклин) ограничивает агрегацию тромбоцитов, обусловленную адренергическими эффектами стресса.

Таким образом, сопряжение стресс-реализующих и стресс-лимитирующих систем действительно является общим механизмом своевременного ограничения стресс-реакции.

2. Адаптация к повторным стрессорным воздействиям всегда сопровождается активацией биосинтеза и накоплением метаболитов стресслимитирующих систем в определенных отделах головного мозга и на периферии - glavsovet.ru. Так, при адаптации к коротким иммобилизационным воздействиям, как будет показано ниже, содержание лей- и мет-энкефалинов, а также β-эндорфина увеличивается в структурах полосатого тела и гипоталамуса на 70-100%, содержание лей- и мет-энкефалинов в надпочечниках увеличивается в среднем в 2-2,5 раза. Аналогичным образом возрастает содержание мет-энкефалина в гипоталамусе после курса электросудорожных воздействий, причем максимум его составлял около 60% и по времени совпадал с развитием антидепрессивного эффекта электросудорожной терапии.

В исследованиях показано, что у крыс после 60 дней воздействия иммобилизационного стресса в клетках-пеналах, которое авторы квалифицировали как гипокинезию, наблюдалось резкое повышение содержания р-эндорфина в продолговатом мозге, гипофизе и лей-энкефалина в гипофизе, что может говорить об увеличении интенсивности синтеза опиоидных пептидов в гипофизе и других отделах головного мозга.

Показано, что адаптация к повторным действиям иммобилизационного стресса приводит к повышению мощности системы синтеза ГАМК - увеличению активности ключевого фермента синтеза глутаматдекарбоксилазы, что позволяет полагать, что адаптация способствует повышению функциональных возможностей ГАМК-ергической системы.

К настоящему времени имеются данные, показывающие, что адаптация к повторным стрессорным воздействиям сопровождается повышением содержания и резервных возможностей синтеза серотонина и дофамина в некоторых структурах гипоталамуса, среднего и продолговатого мозга. В частности, показано, что у животных, подвергавшихся 24 иммобилизационным стрессорным воздействиям, наряду с увеличением серотонина в указанных отделах мозга наблюдается повышение содержания дофамина (на 40-100%) и резкое возрастание отношения дофамин/норадреналин.

Важность указанных адаптационных сдвигов трудно оценить в полной мере, так как до настоящего времени еще недостаточно ясны конкретные взаимосвязи между регуляторными системами. Однако некоторые принципиальные аспекты этой значимости можно себе представить уже теперь. В частности, повышение содержания дофамина очевидно, играет важную роль в защитном эффекте адаптации в связи с тем, что стимуляция пресинаптических дофаминергических рецепторов, существующих на симпатических терминалях, угнетает высвобождение норадреналина и тем самым ограничивает адренергические эффекты стресс-реакции в различных органах и в том числе - предупреждает образование стрессорных язв желудка и вызывает гипотензию и брадикардию. Известно также, что норадреналин и дофамин на уровне мозга действуют как соответственно стимулятор и ингибитор секреции АКТГ, особенно в центральном ядре амигдалы и передней и латеральной областях гипоталамуса. Это позволяет также полагать, что повышение содержания дофамина способствует ограничению такого компонента стресс-реакции, как выход кортикотропин-рилизинг-фактора.

В целом имеющиеся данные позволяют представить себе постепенно вырисовывающуюся картину координированной стационарной активации центральных стресс-лимитирующих систем при адаптации к экстремальным ситуациям и дают основание подчеркнуть защитное значение этого явления.

3. При адаптации к стрессорным ситуациям доказано повышение активности стресс-лимитирующих систем, непосредственно защищающих клеточные мембраны от стрессорных и иных повреждений. Так, при адаптации к повторным стрессорным воздействиям в сердечной мышце доказано увеличение активности антиоксидантных ферментов, а именно каталазы на 38% и супероксиддисмутазы на 16%. Поэтому устойчивость спонтанно сокращающихся изолированных предсердий к аритмогенному эффекту химического индуктора свободнорадикального окисления H2O2 оказалась у адаптированных животных увеличенной в 2-3 раза. Аналогичным образом адаптация к минимальной непрерывной иммобилизации постепенно, через 7 суток, привела к активации биосинтеза простагландинов в дне желудка крыс в 3 раза. После этого концентрированные растворы этанола, маннитола, соляной кислоты, которые при прямом действии обычно повреждают 95% поверхности слизистой желудка, практически утратили свой повреждающий эффект. Это защитное действие адаптации полностью снималось ингибитором синтеза простагландинов - индометацином. Поэтому имеются основания для того, чтобы говорить о повышении под влиянием адаптации эффективности прямого цитопротекторного действия стресс-лимитирующих систем, функционирующих на уровне исполнительных органов, и при этом весьма вероятно, что эти системы снижают адренореактивность, реактивность к кортикостероидам и играют таким образом роль в механизме десенситизации.

4. Метаболиты и активаторы стресс-лимитирующих систем, т. е. регуляторные пептиды, ГОМК, простагландины, антиоксиданты, а также синтетические аналоги этих соединений успешно предупреждают стрессорные повреждения внутренних органов, т. е. действуют подобно адаптации к стрессорным воздействиям. Так, в результате исследований выяснилось, что введение β-эндорфина, пептида Δ-сна и его циклического производного, природных и синтетических антиоксидантов закономерно предупреждает стрессорные повреждения сердца, желудка, сетчатки, мозга, а также стрессорную депрессию некоторых важных звеньев противоопухолевого иммунитета. Иными словами, перечисленные химические факторы действуют подобно предварительной адаптации к повторным стрессорным ситуациям - glavsovet.ru. Это означает, что изучение центральных и периферических механизмов, ограничивающих стресс-реакцию и играющих роль в адаптации к стрессорным ситуациям, имеет не только теоретическое значение; оно позволяет использовать метаболиты стресс-лимитирующих систем и их синтетические аналоги для предупреждения и устранения стрессорных нарушений, а также неинфекционных заболеваний, в патогенезе которых стресс играет важную роль.

Таким образом, метаболиты центральных и периферических стресс-лимитирующих систем действительно воспроизводят защитный эффект адаптации к стрессорным ситуациям. Поскольку адаптация к стрессорным воздействиям входит как первый этап, а затем и как компонент в адаптацию к любому интенсивному воздействию среды, a'priori можно представить себе, что такая адаптация обладает выраженными перекрестными эффектами, т. е. влияет на резистентность организма к широкому спектру факторов окружающей среды.

Прежде чем мы перейдем к рассмотрению этих перекрестных эффектов, следует подчеркнуть, что указанное обстоятельство, т. е. участие компонента адаптации к стрессу в адаптации организма к различным факторам среды, предполагает еще одно существенное следствие. Оно состоит в том, что активация стресс-лимитирующих систем - системы опиоидных пептидов, простагландинов, антиоксидантной системы - развивается и при адаптации к самым разным факторам среды. В частности, активация антиоксидантных систем и системы опиоидных пептидов доказана при адаптации к физическим нагрузкам и высотной гипоксии. И именно это адаптационное изменение играет, по-видимому, ключевую роль в защитном эффекте этих адаптации при стрессорных и ишемических повреждениях.


Качественное и надёжное обслуживание (ведение, администрирование) вебсайтов,
интернет-магазинов, витрин, блогов, форумов и других web проектов недорого.
Полное администрирование сайтов, включая наполнение контентом и продвижение.



к оглавлению раздела
Адаптация организма к физическим нагрузкам и стрессам


Главсовет.ру

Все права защищены / 2008-2017 © glavsovet.ru / All rights reserved

 

 

 

Дети, подростки, взрослые - психология отношений и уроки воспитания. Главсовет.ру